3-D CMOS Sensor

INVENTORS: PROF. ALYOSHA MOLNAR, DR. PATRICK GILL, ALBERT WANG
Background

- Traditional solid-state image sensors use pixels which measure intensity of incident light.
- However, incident angle of light contains significant information about three-dimensional structure.
- In a lens system (i.e. camera), angle information informs us about focal depth.

Concept:
Use incident angle to extract 3-D structure in both lens-based and lens-less image sensor systems.
Cornell Technology

- New class of angle-sensitive CMOS image sensor chip based on integrated diffraction gratings.
- Compatible with existing microchip manufacturing processes.
- Together with proprietary algorithms, can perform single-lens 3D imaging.
- Cost-effective: Obviates the need for complicated optics.
- Captures not just an image, but metrics!

Angle-Sensitive Pixels
• Operating principle: Angle-sensitive Pixels (ASPs) based on integrated diffraction gratings.

• Diffraction gratings create periodic intensity patterns that shift laterally in response to changes in incident angle.

• A second diffraction grating measures these shifts, which then informs 3D reconstruction algorithm.

CMOS implementation:

Zero added cost over standard CMOS imager
Market & Applications

• Personal electronic devices
 • Availability of depth information will drive apps development (e.g., measuring cup or tailor app)
 • Gesture control

• Mid/high-end digital cameras
 • Post-hoc refocusing

• Biomedical imaging
 • 3D localization of fluorescent cells
 • Low-cost flow cytometry

• Image compression
 • Entirely based on physics/optics
 • Low cost, low power
 • Interactive gaming, video conferencing

• Security, Surveillance & Defense
Status & Next Steps

• Patents
 • Issued US patents: 8,530,811; 8,809,758; 8,767,047
 • Patents pending and issued in China, Europe, Korea

• Technology
 • 3rd generation prototype chips available and demonstrated
 • 4th generation chips: improving manufacturing & design techniques
 • Application-specific proof-of-concept work in progress

• Contact
 • Martin Teschl, MS, CLP
 mt439@cornell.edu
 +1 (607) 254-4454
 Cornell Reference Number: 4337 -
 http://cornell.flintbox.com/public/project/21598/