Advanced Materials for Rechargeable Batteries
Natural Starch Additives for LiS Batteries

- Natural starch is added to sulfur-based cathodes doped with graphene oxide (GO).
- The starch additive immobilizes the polysulfides in the cathode, resulting in significant improvement in cyclability.
- Charge/discharge profiles for the GO-doped cathodes indicate excellent cycling performance and long-term stability.
Novel Coating Structure for LiS Batteries

- Yolk-shell nanocomposite is synthesized via heating vulcanization of a polyaniline-sulfure core-shell structure.
- Shell encapsulates sulfur to prevent dissolution.
- Void space inside shell accommodates sulfur volume expansion.
- Achieved stable capacity of 765 mAh/g at 0.2 C after 200 cycles.
Applications & Advantages

Advantages of the technology:

- High capacity
- Inherent safety due to low reactivity of materials
- Naturally abundant and low-cost raw materials
- Stable cycling behavior

Battery replacement in a variety of applications:

- Electric vehicles
- Portable electronics
- Energy storage for solar and wind generated power
Patents & Contact Info

Patents:
- PCT Application # PCT/US14/33774, titled “Carbon-Sulfur Based Core-Shell Materials Compositions, Methods and Applications”
- PCT Application # PCT/US14/45573, titled “Coating Structure, Methods, and Applications for Li/S Batteries”

Contact info:
- Lead Inventor: Dr. Hector Abreuña
- Licensing Contact: Bethany Koi, ck574@cornell.edu, 607-254-4502