Generic Programmable Tag (GPT)
Original Motivation

• Biologists/Ecologists desire data acquisition systems with:
 – Automated localization
 – Automated Data Telemetry
 – Low cost tags
 – Longer range
 – Programmable
 – Multi-year capability
 – Low tag mass
 • Flying vertebrates can carry no more than ~ 4% of their body mass
Existing Wildlife Tracking Tags

• 50+ years old design with:
 – Fixed frequency by crystal
 • Each custom-made tag
 – No flexibility in transmission scheduling
 • Limited lifetime set by RC time
 • No calendar functionality
 – Trivial signal modulation
 • Data sent via on-off-keying
 • low data rate
 • Unsuitable for Real-time Locating Systems (RTLS)
Cornell GPT Technology

• Low mass
• Fully programmable
 – Transmission scheduling with calendar
 – Wide range of operating frequency
 – Various modulation formats
• “Lifetime tag”
 – Solar cells and low energy requirements
• Longer range of coverage
• Cost effective
 – Common hardware with customization via software
• “Inverse-GPS” system for automatic localization in real time with no human intervention required after installation
How It Looks

Universal platform for persistent embedded wireless sensors
Potential Applications

• Wildlife/people/objects tracking
• Radio-frequency Identification (RFID)
 – Active (E-Zpass, LoJack)
 – Passive (Point-of-sale, inventory/supply chain management)
• Bluetooth Low Energy (BLE)
 – Healthcare sensors (temp, blood pressure, glucose, etc)
 – Sports & Fitness (heart-rate, cadence, etc)
 – Proximity Sensing (electronic leash)
 – Personal Inventory (find lost-items)
• Real-Time Locating System (RTLS)
 – Time-of-flight
 – Passive RFID
 – Direction-of-arrival
For More Information

• Contact: ctl-connect@cornell.edu

• Cornell Reference Number: 6386
 http://cornell.flintbox.com/public/project/25574/